/**
* A 3D vector.
* It has x, y and z components.
*/
class Vector3 {
/**
* Creates a new vector.
* @param {Number} x The x component. The default is 0.
* @param {Number} y The y component. The default is 0.
* @param {Number} z The z component. The default is 0.
*/
constructor(x = 0, y = 0, z = 0) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Compares if the components of the vector are equal to the components of another vector.
* @param {Vector3} vector The vector to compare the components to.
* @returns {Boolean} A value indicating whether all the components are equal.
*/
equals(vector) {
return this.x === vector.x && this.y === vector.y && this.z === vector.z;
}
/**
* Sets the x, y and z components of the vector.
* @param {Number} x The x component.
* @param {Number} y The y component.
* @param {Number} z The z component.
* @returns {Vector3} The vector.
*/
set(x, y, z) {
this.x = x;
this.y = y;
this.z = z;
return this;
}
/**
* Sets the x component of the vector.
* @param {Number} value The x component.
* @returns {Vector3} The vector.
*/
setX(value) {
this.x = value;
return this;
}
/**
* Sets the y component of the vector.
* @param {Number} value The y component.
* @returns {Vector3} The vector.
*/
setY(value) {
this.y = value;
return this;
}
/**
* Sets the z component of the vector.
* @param {Number} value The z component.
* @returns {Vector3} The vector.
*/
setZ(value) {
this.z = value;
return this;
}
/**
* Copies the components of another vector.
* @param {Vector3} vector The vector to copy.
* @returns {Vector3} The vector.
*/
copy(vector) {
this.x = vector.x;
this.y = vector.y;
this.z = vector.z;
return this;
}
/**
* Creates a clone of the vector.
* @returns {Vector3} The cloned vector.
*/
clone() {
return new Vector3(this.x, this.y, this.z);
}
/**
* Negates the components of the vector.
* @returns {Vector3} The vector.
*/
negate() {
this.x = -this.x;
this.y = -this.y;
this.z = -this.z;
return this;
}
/**
* Sets the components to the negation of another vector.
* @param {Vector3} vector The vector to negate.
* @returns {Vector3} The vector.
*/
negateVector(vector) {
this.x = -vector.x;
this.y = -vector.y;
this.z = -vector.z;
return this;
}
/**
* Adds the components of another vector.
* @param {Vector3} vector The vector to add.
* @returns {Vector3} The vector.
*/
add(vector) {
this.x += vector.x;
this.y += vector.y;
this.z += vector.z;
return this;
}
/**
* Adds a scalar to the x, y and z components of the vector.
* @param {Number} s The scalar to add.
* @returns {Vector3} The vector.
*/
addScalar(s) {
this.x += s;
this.y += s;
this.z += s;
return this;
}
/**
* Adds a value to each component of the vector.
* @param {Number} x The value to add to the x component.
* @param {Number} y The value to add to the y component.
* @param {Number} z The value to add to the z component.
* @returns {Vector3} The vector.
*/
addValues(x, y, z) {
this.x += x;
this.y += y;
this.z += z;
return this;
}
/**
* Sets the vector to the addition of two vectors.
* @param {Vector3} u The first vector.
* @param {Vector3} v The second vector.
* @returns {Vector3} The vector.
*/
addVectors(u, v) {
this.x = u.x + v.x;
this.y = u.y + v.y;
this.z = u.z + v.z;
return this;
}
/**
* Subtracts the components of another vector.
* @param {Vector3} vector The vector to subtract.
* @returns {Vector3} The vector.
*/
subtract(vector) {
this.x -= vector.x;
this.y -= vector.y;
this.z -= vector.z;
return this;
}
/**
* Subtracts a scalar from the x, y and z components of the vector.
* @param {Number} s The scalar to subtract.
* @returns {Vector3} The vector.
*/
subtractScalar(s) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
}
/**
* Subtracts a value from each component of the vector.
* @param {Number} x The value to subtract from the x component.
* @param {Number} y The value to subtract from the y component.
* @param {Number} z The value to subtract from the z component.
* @returns {Vector3} The vector.
*/
subtractValues(x, y, z) {
this.x -= x;
this.y -= y;
this.z -= z;
return this;
}
/**
* Sets the vector to the difference of two vectors.
* @param {Vector3} u The first vector.
* @param {Vector3} v The second vector.
* @returns {Vector3} The vector.
*/
subtractVectors(u, v) {
this.x = u.x - v.x;
this.y = u.y - v.y;
this.z = u.z - v.z;
return this;
}
/**
* Multiplies the components of the vector by a scalar.
* @param {Number} s The scalar to multiply.
* @returns {Vector3} The vector.
*/
multiplyScalar(s) {
this.x *= s;
this.y *= s;
this.z *= s;
return this;
}
/**
* Divides the components of the vector by a scalar.
* @param {Number} s The scalar to divide.
* @returns {Vector3} The vector.
*/
divideScalar(s) {
this.x /= s;
this.y /= s;
this.z /= s;
return this;
}
/**
* Calculates the dot product with another vector.
* @param {Vector3} vector The vector to calculate the dot product with.
* @returns {Number} The dot product.
*/
dot(vector) {
return this.x * vector.x + this.y * vector.y + this.z * vector.z;
}
/**
* Sets the vector to the cross product between two vectors.
* @param {Vector3} u The first vector.
* @param {Vector3} v The second vector.
* @returns {Vector3} The vector.
*/
crossVectors(u, v) {
this.x = u.y * v.z - u.z * v.y;
this.y = u.z * v.x - u.x * v.z;
this.z = u.x * v.y - u.y * v.x;
return this;
}
/**
* Calculates the length of the vector.
* @returns {Number} The length.
*/
length() {
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
}
/**
* Calculates the squared length of the vector.
* @returns {Number} The squared length.
*/
lengthSquared() {
return this.x * this.x + this.y * this.y + this.z * this.z;
}
/**
* Calculates the distance to another vector.
* @param {Vector3} vector The vector to calculate the distance to.
* @returns {Number} The distance.
*/
distanceTo(vector) {
const distX = this.x - vector.x;
const distY = this.y - vector.y;
const distZ = this.z - vector.z;
return Math.sqrt(distX * distX + distY * distY + distZ * distZ);
}
/**
* Calculates the squared distance to another vector.
* @param {Vector3} vector The vector to calculate the squared distance to.
* @returns {Number} The squared distance.
*/
distanceToSquared(vector) {
const distX = this.x - vector.x;
const distY = this.y - vector.y;
const distZ = this.z - vector.z;
return distX * distX + distY * distY + distZ * distZ;
}
/**
* Normalizes the vector.
* When the vector length is 0, it does nothing.
* @returns {Vector3} The vector.
*/
normalize() {
const length = Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
if (length !== 0) {
this.x /= length;
this.y /= length;
this.z /= length;
}
return this;
}
/**
* Transforms the vector by applying a Matrix3 to it.
* @param {Matrix3} matrix3 The transform matrix.
* @returns {Vector3} The vector.
*/
transform(matrix3) {
const { x, y, z } = this;
const m = matrix3.elements;
this.x = x * m[0] + y * m[3] + z * m[6];
this.y = x * m[1] + y * m[4] + z * m[7];
this.z = x * m[2] + y * m[5] + z * m[8];
return this;
}
/**
* Sets the vector to the components of another vector transformed by a matrix.
* @param {Vector3} vector The vector to transform.
* @param {Matrix3} matrix3 The transform matrix.
* @returns {Vector3} The vector.
*/
transformVector(vector, matrix3) {
const { x, y, z } = vector;
const m = matrix3.elements;
this.x = x * m[0] + y * m[3] + z * m[6];
this.y = x * m[1] + y * m[4] + z * m[7];
this.z = x * m[2] + y * m[5] + z * m[8];
return this;
}
/**
* Transforms the vector with a Matrix4.
* It considers the homogeneous coordinate as 1.
* @param {Matrix4} matrix4 The transform matrix.
* @returns {Vector3} The vector.
*/
transformPosition(matrix4) {
const { x, y, z } = this;
const m = matrix4.elements;
this.x = x * m[0] + y * m[4] + z * m[8] + m[12];
this.y = x * m[1] + y * m[5] + z * m[9] + m[13];
this.z = x * m[2] + y * m[6] + z * m[10] + m[14];
return this;
}
/**
* Sets the vector to the components of another vector transformed by a matrix.
* It considers the homogeneous coordinate as 1.
* @param {Vector3} vector The vector to transform.
* @param {Matrix4} matrix4 The transform matrix.
* @returns {Vector3} The vector.
*/
transformPositionVector(vector, matrix4) {
const { x, y, z } = vector;
const m = matrix4.elements;
this.x = x * m[0] + y * m[4] + z * m[8] + m[12];
this.y = x * m[1] + y * m[5] + z * m[9] + m[13];
this.z = x * m[2] + y * m[6] + z * m[10] + m[14];
return this;
}
/**
* Transforms the vector with a Matrix4.
* It considers the homogeneous coordinate as 0.
* @param {Matrix4} matrix4 The transform matrix.
* @returns {Vector3} The vector.
*/
transformDirection(matrix4) {
const { x, y, z } = this;
const m = matrix4.elements;
this.x = x * m[0] + y * m[4] + z * m[8];
this.y = x * m[1] + y * m[5] + z * m[9];
this.z = x * m[2] + y * m[6] + z * m[10];
return this;
}
/**
* Sets the vector to the components of another vector transformed by a matrix.
* It considers the homogeneous coordinate as 0.
* @param {Vector3} vector The vector to transform.
* @param {Matrix4} matrix4 The transform matrix.
* @returns {Vector3} The vector.
*/
transformDirectionVector(vector, matrix4) {
const { x, y, z } = vector;
const m = matrix4.elements;
this.x = x * m[0] + y * m[4] + z * m[8];
this.y = x * m[1] + y * m[5] + z * m[9];
this.z = x * m[2] + y * m[6] + z * m[10];
return this;
}
/**
* Sets the vector to the interpolation of two other vectors.
* @param {Vector3} u The first vector of the interpolation.
* @param {Vector3} v The second vector of the interpolation.
* @param {Number} t The interpolation value.
* @returns {Vector3} The vector.
*/
lerpVectors(u, v, t) {
this.x = (1 - t) * u.x + t * v.x;
this.y = (1 - t) * u.y + t * v.y;
this.z = (1 - t) * u.z + t * v.z;
return this;
}
}
/**
* A Vector3 with its x, y and z components equal to zero.
*/
Vector3.zero = new Vector3(0, 0, 0);
/**
* A Vector3 with its x, y and z components equal to zero.
*/
Vector3.one = new Vector3(1, 1, 1);
/**
* A unit Vector3 along the x axis.
*/
Vector3.unitX = new Vector3(1, 0, 0);
/**
* A unit Vector3 along the y axis.
*/
Vector3.unitY = new Vector3(0, 1, 0);
/**
* A unit Vector3 along the z axis.
*/
Vector3.unitZ = new Vector3(0, 0, 1);
export default Vector3;